MATH 218: Elementary Linear Algebra with Applications

Fall 2015-2016, Final, Duration: 120 min.

Exercise 1. Prove or disprove that the following transformations are linear:

- (a) (10 points) $T_1: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ defined by $T_1(A) = AA^t$.
- (b) (10 points) $T_2 : \mathbb{R}_2[X] \to \mathbb{R}$ defined by $T_2(P) = 2P'(0)$.
- (c) (10 points) $T_3 : \mathbb{R}_1[X] \to \mathbb{R}_1[X]$ with $T_3(1+X) = X$, $T_3(1-X) = 1+X$ and $T_3(2) = 2-X$.

Exercise 2. Let $T : \mathbb{R}_2[X] \to \mathbb{R}_3[X]$ be the linear map defined by

$$T(a + bX + cX^{2}) = b - c + (a + c)X + (a + b)X^{2} + (a + b)X^{3}.$$

Consider the canonical bases $C_2 = \{1, X, X^2\}$ and $C_3 = \{1, X, X^2, X^3\}$.

- (a) (5 points) Explain briefly and with no computation why T cannot be onto.
- (b) (10 points) Find a basis of kerT.
- (c) (10 points) Find a basis of ImT.
- (d) (10 points) Find the matrix $[T]_{\mathcal{C}_2}^{\mathcal{C}_3}$ of T from \mathcal{C}_2 to \mathcal{C}_3 .

Exercise 3. Let
$$A = \begin{pmatrix} 2 & 0 & 0 \\ -2 & 2 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$

(a) (18 points) Find the eigenvalues and eigenspaces of A.

- (b) (5 points) Why is A diagonalizable?
- (c) (10 points) Find P invertible and D diagonal such that $A = PDP^{-1}$ (do not compute P^{-1}).

Exercise 4.

(a) Let $A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$.

- i. (5 points) Show that 1 is an eigenvalue of multiplicity two.
- ii. (3 points) Without determining the eigenspace V_1 nor its dimension, explain why A is not diagonalisable (<u>hint:</u> if A was diagonalisable then there would be P, D such that...).
- (b) (5 points) Let A be a 2×2 matrix. Assume that A has two distinct eigenvalues 1 and -1. Prove that $A^2 = I$.
- (c) (4 points) Find a 3×3 matrix A with only two eigenvalues 1 and -1 and such that $A^2 \neq I$.

(d) (5 points) Determine one eigenvalue of
$$A = \begin{pmatrix} -1 & 1 & 1 & 0 & 2 \\ 3 & 2 & -3 & 1 & 0 \\ 2 & 5 & -2 & 0 & 3 \\ -1 & 0 & 1 & 1 & -2 \\ 2 & 2 & -2 & -1 & 1 \end{pmatrix}$$
.

Exercise 5. Let $\mathcal{B} = \left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\2\\1 \end{pmatrix} \right\}.$

- (a) (10 points) Show that \mathcal{B} is a basis of \mathbb{R}^3 .
- (b) (15 points) Using the Gram-Schmidt process to transform \mathcal{B} into an orthonormal basis.

Exercise 6. Consider the subspace $W = span \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}.$

- (a) (10 points) Determine a basis of W^{\perp} .
- (b) (5 points) Let $v = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. Find $proj_W(v)$.
- (c) (5 points) Find explicitly $w \in W$ and $w' \in W^{\perp}$ such that v = w + w'.

Exercise 7. Assume that \mathbb{R}^3 is endowed with the dot product and let $W = span\{w\}$ be a subspace of \mathbb{R}^3 of dimension one. Let $proj_W : \mathbb{R}^3 \to \mathbb{R}^3$ be the orthogonal projection on W.

- (a) **Part A.** The goal is to show that $proj_W$ is diagonalisable.
 - i. (3 points) Prove that if $u \in W$ then $proj_W(u) = u$ (<u>hint</u>: if $u \in W = span\{w\}$ then u can be written u = cw where c is a scalar).
 - ii. (4 points) Deduce that 1 is an eigenvalue and show that the eigenspace V_1 associated to 1 is equal to W.
 - iii. (2 points) Deduce also from i. that Im $proj_W = W$.
 - iv. (4 points) What is the dimension of W^{\perp} ?
 - v. (3 points) Prove that Ker $proj_W = W^{\perp}$.
 - vi. (3 points) Use v. to determine another eigenvalue of $proj_W$ and the corresponding eigenspace.
 - vii. (3 points) Why is $proj_W$ diagonalisable?
- (b) **Part B.** The goal is to find a basis \mathcal{B} in which $[proj_W]_{\mathcal{B}}$ is diagonal. Assume that $\{v_1, v_2\}$ is an orthogonal basis of W^{\perp} .
 - i. (4 points) Prove that $\mathcal{B} = \{w, v_1, v_2\}$ is an orthogonal basis of \mathbb{R}^3 (note: recall that we have $W = span\{w\}$).
 - ii. (4 points) Determine the matrix representation $[proj_W]_{\mathcal{B}}$ of $proj_W$ in the basis \mathcal{B}
- (c) **Part C. (5 points)** Consider the particular case $W = span \left\{ \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\}$. Find a basis \mathcal{B} such that

 $[proj_W]_{\mathcal{B}}$ is diagonal (<u>hint</u>: this part is a direct application of Part B; e.g. the first step is to find an orthogonal basis of W^{\perp} ,...).