MATH 218: Elementary Linear Algebra with Applications

Fall 2015-2016, Final, Duration: 120 min.

Exercise 1. Prove or disprove that the following transformations are linear:
(a) (10 points) $T_{1}: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by $T_{1}(A)=A A^{t}$.
(b) (10 points) $T_{2}: \mathbb{R}_{2}[X] \rightarrow \mathbb{R}$ defined by $T_{2}(P)=2 P^{\prime}(0)$.
(c) (10 points) $T_{3}: \mathbb{R}_{1}[X] \rightarrow \mathbb{R}_{1}[X]$ with $T_{3}(1+X)=X, T_{3}(1-X)=1+X$ and $T_{3}(2)=2-X$.

Exercise 2. Let $T: \mathbb{R}_{2}[X] \rightarrow \mathbb{R}_{3}[X]$ be the linear map defined by

$$
T\left(a+b X+c X^{2}\right)=b-c+(a+c) X+(a+b) X^{2}+(a+b) X^{3}
$$

Consider the canonical bases $\mathcal{C}_{2}=\left\{1, X, X^{2}\right\}$ and $\mathcal{C}_{3}=\left\{1, X, X^{2}, X^{3}\right\}$.
(a) (5 points) Explain briefly and with no computation why T cannot be onto.
(b) (10 points) Find a basis of $\operatorname{ker} T$.
(c) (10 points) Find a basis of $\operatorname{Im} T$.
(d) (10 points) Find the matrix $[T]_{\mathcal{C}_{2}}^{\mathcal{C}_{3}}$ of T from \mathcal{C}_{2} to \mathcal{C}_{3}.

Exercise 3. Let $A=\left(\begin{array}{ccc}2 & 0 & 0 \\ -2 & 2 & 1 \\ 2 & 0 & 1\end{array}\right)$.
(a) (18 points) Find the eigenvalues and eigenspaces of A.
(b) (5 points) Why is A diagonalizable?
(c) (10 points) Find P invertible and D diagonal such that $A=P D P^{-1}\left(\right.$ do not compute $\left.P^{-1}\right)$.

Exercise 4.

(a) Let $A=\left(\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right)$.
i. (5 points) Show that 1 is an eigenvalue of multiplicity two.
ii. (3 points) Without determining the eigenspace V_{1} nor its dimension, explain why A is not diagonalisable (hint: if A was diagonalisable then there would be P, D such that...).
(b) (5 points) Let A be a 2×2 matrix. Assume that A has two distinct eigenvalues 1 and -1 . Prove that $A^{2}=I$.
(c) (4 points) Find a 3×3 matrix A with only two eigenvalues 1 and -1 and such that that $A^{2} \neq I$.
(d) (5 points) Determine one eigenvalue of $A=\left(\begin{array}{ccccc}-1 & 1 & 1 & 0 & 2 \\ 3 & 2 & -3 & 1 & 0 \\ 2 & 5 & -2 & 0 & 3 \\ -1 & 0 & 1 & 1 & -2 \\ 2 & 2 & -2 & -1 & 1\end{array}\right)$.

Exercise 5. Let $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)\right\}$.
(a) (10 points) Show that \mathcal{B} is a basis of \mathbb{R}^{3}.
(b) (15 points) Using the Gram-Schmidt process to transform \mathcal{B} into an orthonormal basis.

Exercise 6. Consider the subspace $W=\operatorname{span}\left\{\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ 1\end{array}\right)\right\}$.
(a) (10 points) Determine a basis of W^{\perp}.
(b) (5 points) Let $v=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$. Find $\operatorname{proj}_{W}(v)$.
(c) (5 points) Find explicitly $w \in W$ and $w^{\prime} \in W^{\perp}$ such that $v=w+w^{\prime}$.

Exercise 7. Assume that \mathbb{R}^{3} is endowed with the dot product and let $W=\operatorname{span}\{w\}$ be a subspace of \mathbb{R}^{3} of dimension one. Let $\operatorname{proj}_{W}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the orthogonal projection on W .
(a) Part A. The goal is to show that proj_{W} is diagonalisable.
i. (3 points) Prove that if $u \in W$ then $\operatorname{proj}_{W}(u)=u$ (hint: if $u \in W=\operatorname{span}\{w\}$ then u can be written $u=c w$ where c is a scalar).
ii. (4 points) Deduce that 1 is an eigenvalue and show that the eigenspace V_{1} associated to 1 is equal to W.
iii. (2 points) Deduce also from i. that $\operatorname{Im} \operatorname{proj}_{W}=W$.
iv. (4 points) What is the dimension of W^{\perp} ?
v. (3 points) Prove that Ker $\operatorname{proj}_{W}=W^{\perp}$.
vi. (3 points) Use v. to determine another eigenvalue of $p r o j_{W}$ and the corresponding eigenspace.
vii. (3 points) Why is proj_{W} diagonalisable?
(b) Part B. The goal is to find a basis \mathcal{B} in which $\left[\operatorname{proj}_{W}\right]_{\mathcal{B}}$ is diagonal. Assume that $\left\{v_{1}, v_{2}\right\}$ is an orthogonal basis of W^{\perp}.
i. (4 points) Prove that $\mathcal{B}=\left\{w, v_{1}, v_{2}\right\}$ is an orthogonal basis of \mathbb{R}^{3} (note: recall that we have $W=\operatorname{span}\{w\})$.
ii. (4 points) Determine the matrix representation $\left[\operatorname{proj}_{W}\right]_{\mathcal{B}}$ of proj_{W} in the basis \mathcal{B}
(c) Part C. (5 points) Consider the particular case $W=\operatorname{span}\left\{\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)\right\}$. Find a basis \mathcal{B} such that $\left[\operatorname{proj}_{W}\right]_{\mathcal{B}}$ is diagonal (hint: this part is a direct application of Part B; e.g. the first step is to find an orthogonal basis of W^{\perp}, \ldots).

